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Abstract. The fundamental singular velocity and pressure fields generated by the presence of an isolated line force
acting at a point in a two-dimensional unbounded viscous incompressible medium executing oscillatory motions
are used to formulate an integral equation which governs the flow past an arbitrarily shaped body. The Fredholm
integral equation of the first kind is then solved by means of a boundary-element method, for the translational
oscillatory flow past circular, elliptic and orthogonally intersecting cylinders. The asymptotic behaviour of the
force on the cylinder for large values of the frequency parameter is obtained.
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1. Introduction

The boundary-integral formulation for three-dimensional oscillatory Stokes flows using the
singular field, has been extensively studied both from the analytical and the numerical
point of view (Mc. Cracken [1], Deuring [2], and Pozrikidis [3]). It is of interest to note
that, as long ago as 1896, Lorentz [4, 5, 6] derived the integral relationship between the
velocity field and the continuous distribution of the fundamental singular solution (Equa-
tion 7, page 11 of [5]) which is now used so widely in the area of boundary-integral and
boundary-element methods. Lorentz arrived at this equation using the well-known Stokes
solution for the flow induced by a moving sphere and then taking the limits as Re! 0 and
c ! 1 with Re c ! 1, where Re is the Reynolds number andc is the constant velocity
of the sphere. Thus, he derives what is now known as the stokeslet, although Stokes nev-
er considered this double limit. The discovery of the stokeslet may therefore be attributed
to Lorentz in 1896. Other relevant key papers in this area are Youngren and Acrivos [7],
Holtsmarket al. [8], Loewenberg [9, 10], and Pozrikidis [11, 12, 13]. For a source of refer-
ences of stokeslet solutions see [14]. Recently Liron and Barta [15] presented a new generic
boundary-integral equation with physical meaning. Kim and Power [16] showed how to derive
the homogeneous version of their equation from the formulation developed by Karrila and
Kim [17, 18].

In this paper, we study the two-dimensional oscillatory Stokes flow in an unbounded region
exterior to an arbitrarily shaped cylinder using the boundary-integral method. Streamlines
and velocity profiles are presented for translational oscillatory flow past an elliptic cylinder
and a cylinder with a cross section formed by two orthogonally intersecting cylinders. The
asymptotic behaviour of the force exerted on the cylinder for large values of the frequency
parameter is also considered.
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Figure 1.

2. The oscillatory line stokeslet

We consider a viscous incompressible fluid in a two-dimensional unbounded domain executing
oscillatory motion. The viscous forces in the fluid are assumed to dominate the inertial forces.

The primary fundamental velocity and pressure fields(vi; p) corresponding to an oscillatory
singular line force located at the origin is given by
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p = �(gixi)=2�r2 + P; (2.2)

whereK0(�r) andK1(�r) denote modified Bessel functions andP is a constant. The constant
vectorgj characterises the strength and the direction of the singular line force. The Equations
(2.1) and (2.2) are the primary singular velocity and pressure fields for the two-dimensional
oscillatory motion. The solutions for the translational oscillations of a circular cylinder with
this singular solution is given by Pop and Cheng [19].

We consider the domain
 exterior to�, the contour of the cylinder,C", a circle of radius
" centered at�x and interior toCR, a large circle of radiusR enclosing both� andC". The
point (x1; x2) is an arbitrary point in this domain (see Figure 1). Using appropriate Green’s
identities in this domain and proceeding to the limits"! 0 andR!1 along familiar lines,
we obtain after some algebra

wk(�x) = w
1

k (x)�
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�

Z
�

�i(��)Gik(��; �x)d��: (2.3)

Here�i(��) = �ij(��)nj(��), where�ij denotes the stress tensor andw1k denotes the undisturbed
component of the flow at large distances.Gik(��; �x) denotes the field due to the stokeslet placed
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Figure 2.

at �x. With the help of the boundary conditions, we obtain the following system of Fredholm
integral equations of the first kind for the unknown density function�:
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where�̂i = �i � �i andr̂2 = (�i � �i)(�i � �i). It is shown in the ensuing sections that the
integral equation (2.4) is capable of representing any arbitrary flow with prescribed boundary
conditions. It can be shown that, while the unknown density� is not uniquely determined, the
velocity field is uniquely determined (Power and Wrobel [20]).

3. Numerical solution of the integral equation using the boundary element technique

We divide the contour� into N elements and each element is denoted by�j wherej =
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where �̂i = �i � ymi and r2 = (�i � ymi )(�i � ymi ). Here�1 and �2 are the variables of
integration and�i(y

j
1; y

j
2) is a constant independent of(�1; �2).

The integral appearing in (3.2) is a regular integral forj 6= m. Whenj = m, the integrands
possess only a removable singularity which presents no difficulty. We evaluate the integral
using a 12-point Gauss quadrature formula and the resulting system of 4N� 4N linear
equations are solved to obtain�i at the mid points(yj1; y

j
2); j = 1;2 : : : N . These values of�i

are substituted in (2.3) and the integral is evaluated by means of a Gauss Quadrature formula
to obtainvk(x1; x2), where(x1; x2) is any arbitrary point in the exterior of the contour�.

4. High frequency analysis of the force on the cylinder

In this section we consider the behaviour of the force exerted on an elliptic cylinder in the
limit of high frequency oscillations. The equations of motion are formulated in terms of the
stream function in the elliptic coordinate system(�; �) defined by

x = c cosh� cos�; y = c sinh� sin�: (4.1)

The physical parameters on which the force on the cylinder depends are (i) the constant value
of � which defines the ellipse and (ii) the frequency parameter�. The stream function of
the linearized flow in two dimensions satisfies the equation

r
2(r2
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2) = 0; (4.2)

which, in the elliptical coordinates defined by (4.1), may be split into two equations
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The Equation (4.4) separates into the Mathieu equations for the two functionsf(�) andf(�)
where = f(�)g(�). To obtain the asymptotic expression for the stream function for high
frequency oscillations, we transform the Mathieu equation
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first by the substitutionx = �iq1=2 exp(�) and then by a transformation of the dependent
variable given byf = w(x)exp(�x) to obtain
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wherep = ��2 � �2c2=2. A solution of (4.7) may be written (see [21]) as

w(x) =
1X
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(�1)rCrx
�r�1=2

: (4.8)

This gives

f(�) = expfiq1=2 exp(�)g
1X
r=0

(�1)rCrf�iq
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: (4.9)

From (4.9) we obtain for, largeq,

f(�) � expfiq1=2 exp(�)g: (4.10)

In a similar manner, the terms ing which dominate for largeq are given by (page 41 ref. [21])

g(�) = sin� + sin(3�): (4.11)

The truncated stream function corresponding to high-frequency oscillations may now be
written as

 (�; �) = K1(expf�q1=2 exp(�)g[sin� + sin(3�)])

+K2 exp(��) sin� +K3 exp(�3�) sin 3� + Uc sinh� sin�: (4.12)

The constantsK1;K2;K3 determined by the boundary conditions to the least square approx-
imation are
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The force on the cylinder for high-frequency oscillations is given by
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5. Results and conclusions

For a test case, we take� to be a circular cylinder of unit radius and divide the contour� into
thirty linear elements. The numerical value of the velocity field obtained by solving (2.3) is
in good agreement with the velocity field given by the exact solution given in [20].

We present the streamline pattern at different times at a fixed frequencyj�j = 1�0 for an
ellipse and a body composed of orthogonally intersecting cylinders. At!t = 0, the streamline
pattern resembles a steady uniform flow past a cylinder. As!t increases to 1�35 we see
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Figure 3. Figure 4.

Figure 5. Figure 6.

Figure 7. Figure 8.

engi473.tex; 14/05/1998; 13:54; v.7; p.6



Two-dimensional oscillatory Stokes flow past an arbitrary body257

eddy formations in regions very close to the cylinder (Figures 3–5) and, as time increases,
the dimensions of the eddies become larger and the eddies move away from the cylinder
(Figures 4–6). At still larger times the eddies vanish and the flow reaches the initial pattern.
This sequence of events can be described as the formation of the eddies in the decelerating
cycle and their smoothing out in the accelerating cycle.

To investigate the role played byj�j on the structure of the flow, we draw the velocity
profiles for various values ofj�j. We present the velocity profiles atx = 0; y > 1 for
various values ofj�j > 0. As j�j increases, the velocity profiles indicate the presence of a
boundary layer. Atj�j = 10, we observe that in a small region near the boundary the velocity
changes sharply to satisfy the no-slip conditions on the boundary (Figures 7, 8). Our results
are resticted forj�j610, because of computational difficulties. Because of the presence of the
boundary layers for increasingly large values ofj�j, sharp changes in the velocity take place
in a small region near the boundary. As mentioned at the end of section (2), the linear system
of equations obtained from the Fredholm integral equation of the first kind is in general ill-
conditioned. However, when the number of elements are not quite large, we obtain reasonably
good solutions. It can also be inferred that the time at which the formation and smoothing of
the eddies take place is the same in all cases considered.
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